Motors and Motor Controllers

Brian Silverman Spartan Series 2018

Why I'm interested in this stuff

What is a motor?

- Device that converts electrical power to mechanical
 - Reversible too (motors and generators are the same)
- General idea is to have two magnetic fields on the rotor (rotating part) and stator (stationary part) which are kept rotationally separated to produce torque
- At least one of them has to be produced from an electromagnetic coil
 - Otherwise, can't change it, so then motor can't rotate continuously
- Many permutations of how to implement it, with various tradeoffs:
 - Permanent magnets on rotor or stator
 - Two coils connected in series or parallel or separately
 - \circ \quad How to power coils in rotor
 - How to commutate (keep the fields separated, because as it rotates the fields will align eventually if one/both doesn't keep moving)

Electricity basics

- Voltage, current, resistance, and power
- Simple analogy to water in pipes (hydraulic analogy)
 - Water has no mass, turbulence, it always stays in the pipes, etc
 - \circ $\hfill Have to be careful taking it too far$
- Voltage is pressure, and current is velocity
 - Ohm's law: V = I * R, aka pressure difference = velocity * resistance to flow
- Resistance to electricity is like resistance to flow (constriction in pipe)
 - All pipes restrict flow to some extent, just like all wires
- Power is energy moved per unit time

• $P = I * V = I^2 * R$

Brushed permanent magnet motor

- Common for a while in low power applications
- Brushes commutate mechanically so it spins when you apply DC voltage
 - But brushes wear out, and aren't too efficient, and spark
- Simple to control, especially with fairly simple power electronics (switch power on/off quickly, voltage averages out, also allows reversing easily)

Permanent magnet synchronous motor (PMSM)

- Currently used in high performance low to medium power applications (toothbrushes to trains, but not power plants)
- Rotor has permanent magnets so no need to connect to it electrically
- Requires more sophisticated control electronics
 - Similar to induction motors, which are also used in similar applications
- Commonly called "brushless motors"

Motor controllers

- Need to control the current going through the motor
- Same component structure for brushed motors, three-phase motors, inverters, DC mains supplies (opposite of an inverter), and DC-DC converters

More electricity concepts

- Capacitance: resistance to change in voltage
 - Batteries have a lot
 - Flexible diaphragm in pipe

- If you try changing the voltage across it, a capacitor will change current through itself to oppose the change
- Inductance: resistance to change in current
 - Inductor is basically a big coil of wire (like an electromagnet, in a motor or solenoid)
 - Heavy paddlewheel
 - If you try changing the current through it, an inductor will change the voltage across itself to oppose the change

Electronic components

- Anything that electricity flows through is (at least) a resistor, capacitor, and inductor (some are mostly just one, but all have some parasitics)
- Inductor is literally just a coil of wire
- Capacitor is parallel plates that are close together
 - Different materials and different ways of packing lots of surface area into a small volume
- Diode lets current flow one direction but not the other
 - Open circuit with voltage one way, constant voltage drop the other
- MOSFET is either a diode or a resistor
 - Like a switch, allows turning things on and off
 - Switches quickly because no physical moving parts

Half-bridges

- Each phase is driven high or low
- However, need some dead time to avoid shoot through
 - If they're both on for any amount of time, lots of current flows really fast because no inductor to slow it down
- Switching is actually a fairly complicated process

Switching

2: High side turning off

1: High side on

Q1

Q2

4: Low side on

Flux linkage

- Flux linkage is integral of how much force is exerted per unit of current between a coil and a magnet (force is change in flux linkage)
- Equivalently, how much magnetic flux (how many magnetic field lines) from the magnet go through turns of the coil
- Proportional to the voltage induced in the coil from moving the magnet
- In a PMSM, can write rotor-stator flux linkage (the interesting one) as $\lambda(\Theta) = L * i + \Psi_R(\Theta)$
 - First term based on varying reluctance (varying air gap, which creates cogging)
 - \circ \quad Second term is an arbitrary function of the position

Motor equations and curves

- Standard equations:
 - Torque = stall torque * (speed / free speed)
 - Current = stall current * (speed / free speed)
 - Stall current = voltage / resistance
 - V = I * R
 - No torque or current at free speed (no force)

- Proportional to speed
- You can measure it with a voltmeter
- Magnets are moving by coils
- Torque is proportional to the current through the motor
 - Coils are exerting force on the magnets

Current ripple

- Current ramps up and down at switching frequency
 - 20kHz typical for motor controllers, ~10MHz for power supplies
 - Exponential decay, but usually fast enough relative to the inductance it looks like triangles
- Rapidly varying current -> rapidly varying magnetic fields
 - Also means moving lots of energy in and out of the magnetic fields constantly
- Need input capacitors

Input capacitors

- Quickly changing currents cause lots of problems
 - Magnetic interference
 - Parasitic inductance in the power supply means they actually don't in practice
- Use capacitors near the half bridge (physically) to help
 - Boost DC-DC and inverter it's actually the output side
- Large ripple current means they produce heat
 - Ripple energy is constantly being moved in and out

Bootstrap circuit

- N-channel MOSFET needs gate voltage higher than source
 - Could also use P-channel which needs lower than source which connects to power, but N-channel more efficient so for large amounts of power makes more sense
- Easy for low side: drop down from input voltage
- Hard for high side: need a voltage higher than the input
- Solution: bootstrap circuit
 - Capacitor charges while low side on
 - Through diode
 - As low side turns off, load voltage rises
 - Capacitor resists change in voltage
 - Diode turns off
 - High side of cap rises above input

Controlling a half bridge

- Simplest is fixed-frequency PWM
 - Vary the duty cycle based on the control output
 - More complicated ways that decide each switching point in some way too
- Use a control loop to vary the duty cycle based on feedback
 - Motors it's commonly measured current
 - Simple motor controllers also just drive a fixed duty cycle as a proxy for voltage and rely on something external to command an appropriate voltage
 - DC-DCs have a measurement of the output voltage

Cool links

- <u>http://krex.k-state.edu/dspace/bitstream/handle/2097/1507/JamesMevey2009.</u>
 <u>pdf</u>
- http://www.ti.com/lit/ml/slua618/slua618.pdf

Complicated math follows...

Torque

- Lorentz force (magnetic part only, velocity ⊥ magnetic field): F = q * v * B
 - \circ For each of the phases independently
- If the magnetic fields aren't ⊥, effective field in the direction that matters goes down as sin(⊖) (rest of it just pushes on the motor bearings)
- Alternative approach: conservation of energy
 - Electrical power in = mechanical power out
 - Electrical power = I * V
 - Faraday's law: $e = d/dt \phi$
 - This works out to the same numbers

Controlling a PMSM

- Basic idea is current in the three coils combines to form a magnetic field facing in any direction, and the control system keeps that 90° ahead of the stator
- Three phases is common
 - Two can't self-start
 - Same reasons as three phase power: three is 2x as much capacity for 1.5x as much wire, but 4 is only 3x as much for 2x as much wire and so on
 - More is harder to make compact
- Also common to duplicate the three phases multiple times, which doesn't really change anything

Controlling a PMSM continued

- For a simple motor with sinusoidal flux linkage, you want the current to be matching sine waves to get maximum ripple-free torque
 - $\circ \quad \sin^2(\Theta) + \sin^2(\Theta + 120^\circ) + \sin^2(\Theta 120^\circ) = \text{constant}$
 - This is constant mechanical power and also constant electrical power
- When you add harmonics, it gets complicated
 - If flux linkage is $sin(\Theta) + \frac{1}{2}sin(5\Theta)$, need to drive $sin(\Theta) \frac{1}{2}sin(5\Theta)$ (FOIL and it comes out the same)

