
The Intersection of 
Electronics, Design, and 
Programming

Brian Silverman



Introduction

● I’ve been involved with hardware+software+electrical on 971 for 4 years as a 
student and 3 as a mentor

● Various resources for individual areas, but not so much for the combination
● To me, the individual subsystems don’t have much meaning or purpose in a 

robot without the others
● 971 (semi-)deliberately pushes what’s possible with FRC robots

○ Tightly coupled systems like 2014 claws, 2015 elevators+arms, 2016 unfolding, 2017 turret
○ Partly happens due to getting distracted and missing the simple solution



Overview

● Some crazy things you can do
○ Going to refer back to these throughout

● Sensors
● Mechanical
● Motors



Tricky things
Holding a game piece with 

independent jaws

http://www.youtube.com/watch?v=tJNkrBn7yNQ&t=108


Tricky things
Moving a stack horizontally with 

pivoting arms

http://www.youtube.com/watch?v=35e2R_bPdwA&t=55


Tricky things
Unfolding a double-jointed arm 

in sync without colliding with 
itself

http://www.youtube.com/watch?v=bAFA3BCijHI&t=30


Tricky things
Shooting straight with a shooter 

mounted to the indexer

http://www.youtube.com/watch?v=59zGltwCBnU&t=9


Sensors

● Most obvious place for hardware+software to interact
● Give software information about what’s happening
● Going to focus on robot-internal sensors (not cameras etc)

○ Drivetrain encoders are in. Generally model information from those as saying where the robot is 
on a flat, obstacle-free floor rather than about what’s actually around the robot

● Two relevant types: binary and rotary



● On or off (aka boolean)
● Single digital input
● Easy to read
● Hall effects and switches common examples
● Switches: get triggered by acceleration

○ Some come in the KOP, many other shapes
○ 971 hasn’t used since 2012 due to bumps

● Hall effect: magnet and a sensor
○ WCP-0971 is a convenient package

Binary sensors



Rotary sensors

● Detect rotational position
● Absolute: know the position immediately
● Incremental: only know position relative to startup (usually need to zero, 

coming later)
● Limited range: 1-turn, 3-turn, etc (arms, hoods)
● Unlimited range: way too many turns to count (drivetrain, shooter wheels)
● Encoders: good precision, low noise, quick response
● Potentiometer: absolute, simple, noisy



Units

● Both one of the most important things to think about and completely irrelevant
● Easy for code to deal with pretty much anything

○ As long as you keep track of it well

● Common to work in many units for the same quantity (radians, degrees, cycles, 
ticks), which makes it important to specify which one

● Make sure the mechanical and software teams agree on which units they’re 
talking about



Zeroing

● If you have an incremental encoder and want to know where the robot actually 
is, you have to do something

● Binary sensor at one point in the range of motion
○ Or more if you want to be fancy

● Have a potentiometer on the same mechanism
○ Sample it while everything’s stationary at the start

● Encoder index pin
○ Typically more than one rotation, so still need to know which one



Zeroing in 
action

Robot moves both joints over 
hall effect sensors

http://www.youtube.com/watch?v=59zGltwCBnU&t=4


Zeroing in 
action

Robot moves each arm over a 
hall effect sensor at the start of 

teleop

http://www.youtube.com/watch?v=tJNkrBn7yNQ&t=13


Precise software control

● Getting a mechanism to the place you want quickly and consistently takes both 
hardware and software

● Advanced software gets improvements, but a basic PID loop can get pretty far
● Mechanical matters more than people think
● Backlash is how much one connected thing moves without the other one

○ Motor to sensor
○ Motor to end effector
○ End effector to sensor

● Rigidity is how much things bend



Backlash

● Gears, chains, bolts, everything
● Motor ends up chattering back and forth if there’s backlash there
● Backlash between the encoder and other things means you can’t tell where 

the end effector is, so you can’t make it go where you want
● Really hard to do anything about in software
● Up more reductions matters less



Rigidity

● Floppy things are hard to get where you want
● Software ends up wiggling one end back and forth, and the whole thing just 

flexes and doesn’t go anywhere
● Think about it when designing the mechanical
● Stiffness often goes along with strength, but different materials have different 

properties so keep it in mind



Gear ratios

● If you’re putting a lot of power through a motor all the time, it’s going to get hot
● Think about holding power in addition to force
● Having extra force available lets you move it faster, and you can always limit it 

in software later
● More gear stages often lead to backlash though
● Think about extra friction created



Motors and controllers

● Some motors and controllers have more finesse than others
○ But also think about how much power you need

● Don’t use “brake mode”
● Motors with more cogging are harder to do fine control with
● Controllers that switch slowly are hard to work with



Takeaways

● Think about what’s going to work well for software when doing mechanical 
and electrical

● Making everything fit well does matter
● Pick sensors deliberately
● Think about how simple you can make it first



Thank You!



Bonus 
slides



Encoders

● In FRC, generally means some kind of digital output
● Quadrature output (most common): incremental, easy to hook up, fast 

response, 2 signals
● Pulse width output: absolute, harder to read, slower/variable response time, 1 

signal
● SPI/I2C (uncommon): something else with brains in the middle



Potentiometers

● Analog (continuously varying)
● Tend to be a lot noisier than encoders
● Hard to sample quickly (especially after filtering to get rid of noise)
● Fixed number of turns (1, 3, 5, 10 are common)


